

Hydrodynamics of Falling Mine in Water Column

Dr. Peter C Chu and LCDR Anthony Gilles

Naval Postgraduate School, Monterey, CA 93943

Peter Fleischer

Naval Oceanographic Office

ONR Program Manager: Dr. Dawn Lavoie

NAVO MIW Liaison: Mark Null

Mine Impact Burial Prediction

• Urgent Navy Problem

• Complicated Scientific Problem

Naval Mine Threat

Inexpensive Force Multiplier

Roberts (FFG-58), Tripoli (LPH-10), Princeton (CG-59)

Damages \$125 Million; Mines Cost \$30K

Numerous Types

Widely Available

- •Over 50 Countries (40% Increase in 10 Yrs)
 - Over 300 Types (75% Increase in 10 Yrs)
 - 32 Countries Produce (60% Increase in 10 Yrs)
 - 24 Countries Export (60% Increase in 10 Yrs)

WWII Vintage to Advanced Technologies (Multiple Sensors, Ship Count Routines, Anechoic Coatings Non-Ferrous Materials)

Hydrodynamic Characteristics

Complicated Scientific Problem

Body-Fluid Interaction

Highly Nonlinear

Chaotic Behavior

Development of Navy's Impact Burial Prediction Model (IBPM)

- IBPM was designed to calculate mine trajectories for air, water and sediment phases.
- Arnone & Bowen Model (1980) Without Rotation.
- Improved IBPM (Satkowiak, 1987-88) With Rotation.
- Improvements made by Hurst (1992): IMPACT25/28
- Sensitivity studies (Chu et al., 1999, 2000, Taber 1999, Smith 2000).

Key Non-Dimensional Numbers

- Reynolds Number
- Keulegan-Carpenter (KC) Number (Mine-Waves Interaction)
- Wave Period ~ 1 sec

Flow Around the Falling Mine

Turbulence,

Laminar

Falling Mine

Reynolds Number
 Much Larger Than
 300

a)	No separation. Creeping flow	Re < 5	
b)	A fixed pair of symmetric vortices	5 < Re < 40	
c) — () ()	Laminar vortex street	40 < Re < 200	
	Transition to turbulence in the wake	200 < Re < 300	
e) A	Wake completely turbulent. A:Laminar boundary layer separation	300 < Re < 3×10 ⁵ Subcritical	
n A B	A:Laminar boundary layer separation B:Turbulent boundary layer separation;but boundary layer laminar	3×10^5 < Re < 3.5×10^5 Critical (Lower transition)	
g) B	B: Turbulent boundary layer separation;the boundary layer partly laminar partly turbulent	$3.5 \times 10^5 < \text{Re} < 1.5 \times 10^6$ Supercritical	
h) c	C: Boundary layer com- pletely turbulent at one side	1.5×10 ⁶ < Re < 4×10 ⁶ Upper transition	
	C: Boundary layer comple- tely turbulent at two sides	4×10 ⁶ < Re Transcritical	

Falling Mine

• KC = 12 (Vortex Shedding)

Chaotic Features

• Basic equations (6 unknowns) are nonlinear, similar to Lorenz system

Six Unknowns

Momentum Equations

$$\frac{dV_1}{dt} + \omega_2 V_3 - \omega_3 V_2 = \frac{\rho - \rho_w}{\rho} \sin \psi_2 + \frac{F_1^*}{\rho \Pi}$$

$$\frac{dV_2}{dt} + \omega_3 V_1 = \frac{F_2^*}{\rho \Pi}$$

$$\frac{dV_3}{dt} - \omega_2 V_1 = -\frac{\rho - \rho_w}{\rho} \cos \psi_2 + \frac{F_3^*}{\rho \Pi}$$

Moment of Momentum Equations

$$\frac{d\Omega}{dt} + \frac{J_3 - J_2}{J_1} \omega_2 \omega_3 = \frac{LM_1^*}{gJ_1}$$

$$\frac{d\omega_2}{dt} = \frac{\chi \Pi(\rho_w - \rho)L}{J_2} \cos \psi_2 + \frac{LM_2^*}{gJ_2}$$

$$\frac{d\omega_3}{dt} = \frac{LM_3^*}{gJ_3}$$

Lorenz System (1963)

$$\frac{dX}{d\tau} = -\sigma X + \sigma Y,$$

$$\frac{dY}{d\tau} = -XZ + rX - Y,$$

$$\frac{dZ}{d\tau} = XY - bZ.$$

Chaos (Butterfly Pattern) from the Lorenz System

Chaos (Butterfly Pattern) from the Lorenz System

Mine Drop Experiment (MIDEX)

- Hydrodynamic Model Development
- Behavior of Falling Mine in Water Column (Chaotic, Turbulent Wake, Eddy Shedding)

Model Evaluation

Mine Drop Experiment (MIDEX)

• Mine Parameters:

- 1. Density Ratio (1.68, 1.70, 1.88)
 - 2. Center of Mass Position.
 - 3. L/D ratio.

Drop Parameters:

- 1. Drop Angles: 15°, 30°, 45°, 60°, 75°.
- 2. Release Velocity V_{init}

Mine Injector

Mine Shapes:

Length: 15, 12, 9 cm

Diameter: 4 cm

Center of Mass

L=15.1359cm D=4cm m=2.7cm Weight=322.5 g Volume=190.2028 cm³ Density=1.6956 g/cm³

> H: 10.380 8.052 5.725 cm h: -1.462 0.866 3.193 cm M: 0.000 18.468 36.935 mm

> > MODEL #2

L=12.0726cm D=4cm m=1.7cm

Weight=254.2 g Volume=151.709 cm3 Density=1.6756 g/cm3

H: 8.450 6.609 4.768 cm h: -1.564 0.277 2.119 cm M: 0.000 12.145 24.290 mm

MODEL#3

L=9.1199cm D=4cm m=1.47cm

Weight=215.3 g Volume=114.6037 cm3 Density=1.8786 g/cm3

H: 6.662 5.592 4.521 cm h: -1.368 -0.297 0.774 cm M: 0.000 6.847 13.694 mm

Defined COM position as:

2 or -2: Farthest from volumetric center 1 or -1

0: Coincides with volumetric center

Hydrodynamic Theory

 Solid Body Falling Through Fluid Should Obey 2 Physical Principles:

$$\int (\overline{dV^* / dt^*}) dm^* = W^* + F_b^* + F_d^*$$

2. Moment of Momentum Balance

$$\int [r^* \times (dV^* / dt^*)] dm^* = M^*$$

* Denotes dimensional variables $V^* \rightarrow Velocity$ $W^* \rightarrow gravity$ $F_b^* \rightarrow buoyancy force$ $F_d^* \rightarrow drag force$

 $M^* \rightarrow resultant moment$

Data Analysis

- 1. Video converted to digital format.
- 2. Digital video from each camera analyzed frame by frame (30Hz) using video editing program.
- 3. Mine's top and bottom position determined using background x-z and y-z grids. Positions manually entered into MATLAB for storage and later processing.
- 4. Analyzed 2-D data to obtain mine's x,y and z center positions, attitude (angle with respect to z axis) and u,v, and w components.

Non-dimensional Conversions

• In order to generalize results, data was converted to non-dimensional numbers.

Sources of Error

- 1. Grid plane behind mine trajectory plane. Results in mine appearing larger than normal.
- 2. Position data affected by parallax distortion and binocular disparity.
- 3. Air cavity affects on mine motion not considered in calculations.
- 4. Camera plane not parallel to x-y plane due to pool slope.

Underwater Video Clip

Center of Mass: Position 2

Drop Angle: 45; L= 15cm; Vi= 2.874m/s; COM: -2 Drop Angle: 45; L= 15cm; Vi= 2.874m/s; COM: -2 0 0 -0.2 -0.4 -0.5 -0.6 -0.8 Z (m) Z (m) -1.2 -1.4 -1.5 -1.6 -1.8 -2 -2 0.2 0.2 -0.8 -0.6 -0.4 -0.2 0 -0.2 0 0.4 0.6 Y (m) X (m)

Impact Point (All Cases)

Impact Point (All Drop Angles)

Impact Point (By Angle)

Impact Angle (Falling Angle Relative to Vertical Axis)

Impact Angle

• Vertical (0° or 180°)

• Horizontal (90°)

Impact Angle Frequency of Occurrence

Trajectory Patterns

- 1. Straight
- 2. Slant
- 3. Spiral
- 4. Flip
- 5. Flat
- 6. See Saw
- 7. Combination

Multiple Linear Regression

• General Multiple Linear Regression Equation:

$$\mathbf{f}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{1i} + \beta_{2} \mathbf{x}_{2i} + \beta_{3} \mathbf{x}_{3i} + \beta_{4} \mathbf{x}_{4i} + \varepsilon_{i}$$

- Used least squares solution to determine correlation coefficients.
- Input: cos(drop angle); L/D; V_{ind}; COM_{nd}
- Output: $(x_m, y_m, z_m, Psi, u, v, w)$

Multiple Regression Results

	Xm	Уm	Psi	u	V	W
B 0	0746	0546	102.5691	.0040	0135	9481
B 1	.1190	0828	-13.3508	0075	0106	1080
B 2	0469	0798	5009	0011	.0005	.0295
B 3	.0372	.0622	1.0437	.0025	.0011	0221
B 4	.2369	.4330	472.2135	0090	.0537	-1.2467

• Most important parameter for impact prediction is Psi (impact angle).

Check of regression equation:

Determine Psi for case where:

L=15cm, $V_i = 3$ m/s, COM = 2, Drop Angle = 15°

Yields: $Psi = 181.2^{\circ}$

For COM = 1: Psi = 136.1°

For COM = 0: $Psi = 90.4^{\circ}$

Conclusion

- COM position is the most influential parameter for predicting a mine's impact position and angle.
- Final velocities were lowest for COM 0 cases due to the increased effect of hydrodynamic drag.
- Trajectories became more complex as L/D decreased (9 cm mine rotated about z-axis).
- Observed trajectory patterns were more complex than those assumed by IMPACT 25/28. Accurate representation of a mine's water phase motion requires both momentum and moment of momentum equations.